Cobamide-containing membrane protein complex in Methanobacterium

Harald Schulz and Georg Fuchs

Abteilung Angewandte Mikrobiologie, Universität Ulm, Oberer Eselsberg M 23, D-7900 Ulm, FRG

Received 23 January 1986

In Methanobacterium thermoautotrophicum, most of the sole cellular cobamide, 5-hydroxybenzimidazolyl-cobamide (factor III [(1986) Anal. Biochem., submitted]) is bound to a membrane protein. This corrinoid protein is solubilized as a protein complex of $M_r \sim 500\,000$ by 5% nonpolar detergents. The complex is stable in 7 M urea. In SDS, two smaller fractions of $M_r \sim 30\,000$ and $\sim 60\,000$ carrying the cobamide are found. The unusual properties of the corrinoid enzyme complex suggest a novel function in the metabolism of CO₂ and H₂ in methanogens.

(Methanobacterium) Methanogenesis Cobamide Corrinoid enzyme Vitamin B₁₂ Membrane protein

1. INTRODUCTION

Methanogenic bacteria gain energy by synthesizing CH₄ from CO₂ and H₂, C₁-compounds and acetate, respectively [1]. They contain appreciable amounts of cobamides, but their role in metabolism little understood is [2-6].Methanosarcina sp. two soluble corrinoidcontaining proteins act as methyltransferases in *CH₄ formation from *CH₃OH [7-9] and probably from *CH₃COOH [10]. There is indirect evidence that a corrinoid is involved in methyl (*CH₃-) transfer during synthesis of acetyl-CoA (*CH₃-COSCoA) from two CO₂ [11–14]; this process serves for autotrophic cell carbon assimilation in methanogens as well as in many other strict anaerobes [15].

Before the discovery of coenzyme M (HSCH₂CH₂SO₃H) [16], corrinoids were thought to act as CH₃-carriers in methanogenesis from CO₂ and H₂ [17]. However, methyl coenzyme M reductase was shown to catalyze the exergonic final step of *CH₄-formation from *CH₃SCoM and reducing compounds [18]. This enzyme contains a nickel tetrapyrrole rather than a cobamide [19,20]; thus the role of corrinoids in methanogenesis was questionable.

This is the first report of a corrinoid-containing membrane protein which in *Methanobacterium* thermoautotrophicum accounts for most of the cellular cobamide. This bacterium will only grow on CO₂ and H₂. Therefore, the unusual corrinoid protein almost certainly plays an important and novel role in growth of methanogenic bacteria on H₂ and CO₂.

2. EXPERIMENTAL

M. thermoautotrophicum (Marburg strain) was routinely grown as in [21]; ⁵⁷Co-labelled cells were grown in presence of $0.3 \,\mu\text{M}^{+57}\text{CoCl}_2$ (1.1 × 10⁴ Bq/nmol), ³²P-labelled cells were grown in 50 mM Pipes-Na rather than in phosphatebuffered mineral medium (pH 7.0) in the presence of 1 mM KH₂³²PO₄ (8.5 \times 10⁶ Bq/mmol). Cells were harvested at $\Delta A_{578} = 3$ (d = 1 cm; $\triangle 1.2$ g dry wt/l) and stored in liquid nitrogen. The cell extract was made by passage of cell suspensions (1 g fresh cells + 1 g water) through a French pressure cell at 137.6 MPa. Membranes were prepared by centrifugation of a $5000 \times g$ supernatant for 60 min at $100000 \times g$. The ⁵⁷Co-membrane protein was solubilized by stirring the suspended $100000 \times g$ pellet for 2 h in buffered detergent solutions of different concentrations at 20°C, followed by centrifugation. 5-Hydroxybenzimidazolylcobamide (factor III) was isolated, identified and quantitated as in [6]. Gel-filtration experiments were performed on a 2.1×75 cm Sepharose CL-6B column (Pharmacia) using as elution buffers (4 ml·cm⁻² h^{-1} flow rate): (I) 50 mM Tris-HCl, pH 7.5, containing 0.1% deoxycholate, 5 mM dithioerythritol, 0.1 mM phenylmethylsulfonyl fluoride, 0.02% NaN₃; (II) as I, but additional 7 M urea. Calibration was done with a high molecular mass protein calibration kit (Pharmacia) with both elution buffers I and II. CsCl density-gradient centrifugation (2.5 M CsCl in 10 mM Tris-HCl, pH 7.5; T =20°C) was performed with a Beckman VTi 50 rotor at 50000 rpm (206000 \times g) for 16 h. The gradients were fractionated in ~20 fractions. The density was determined by measuring the refraction index. Protein was determined by the Bradford method. ⁵⁷Co was quantitated in a γ -counter, ³²P in an LSC counter or, in double-labelling experiments, by measuring the continuous radiation in a γ -counter. Polyacrylamide-SDS gel electrophoresis in gels containing 12.5% acrylamide was calibrated using a low molecular mass standard protein kit (Pharmacia). Gels were stained with Coomassie brilliant blue G 250 and sliced in 0.5 cm slices.

3. RESULTS

M. thermoautotrophicum contains 0.1 µmol of the Co-corrinoid factor III per g dry wt as the only Co-corrinoid detectable by refined analytical methods [6] (E. Stupperich, personal communication). When cells were grown with H₂: CO₂ (80:20) gas as the sole energy and carbon source in the presence of the γ -radioisotope ${}^{57}\text{Co}^{2+}$, three quarters of the tracer incorporated could be centrifuged down at $100000 \times g$. The remaining one quarter of ⁵⁷Co in the supernatant was free ⁵⁷Co²⁺ and ⁵⁷Co in Co-corrinoids (table 1). A minimum of 66% of the bound ⁵⁷Co was isolated as ⁵⁷Co-cyano factor III (table 2), which was identified by UV/VIS and FAB spectroscopy after HPLC purification [6]. Factor III and ⁵⁷Co comigrated exactly in one single peak on HPLC. When the ⁵⁷Co-labelled, membrane containing $100000 \times g$ pellet was resuspended and centrifuged in a CsCl density gradient, ⁵⁷Co appeared as a symmetrical

Table 1

Distribution of ⁵⁷Co in cell fractions of Methanobacterium thermoautotrophicum, which was grown for 3-4 generations in the presence of ⁵⁷Co²⁺

Cell fractionation step	⁵⁷ Co (cpm)	Percentage of ⁵⁷ Co
Cell extract	254 500	100
$5000 \times g$ supernatant	242 000	95
$100000 \times g$ pellet	183 400	72
$100000 \times g$ supernatant	69600	27

Table 2 57 Co-corrinoid isolation [6] from $100000 \times g$ pellet (membrane fraction) of Methanobacterium thermoautotrophicum

Purification step	⁵⁷ Co (cpm)	Percentage of ⁵⁷ Co in pellet
⁵⁷ Co in 100000 × g pellet		
(≙72%)	183 400	100
Extraction by boiling	142300	78
XAD-4 column pass through		
(non-corrinoid)	15900	9
Al ₂ O ₃ column pass through		
(corrinoid)	120800	66
HPLC corrinoid fraction		
(cyano-factor III)	95000	52

peak at a density of $1.23 \text{ g} \cdot \text{cm}^{-3}$ (fig.1A). Since phospholipids (determined as ^{32}P) banded with ^{57}Co (not shown), the Co-protein(s) is most likely a membrane protein. In support of this conclusion the ^{57}Co -corrinoid protein complex could only be solubilized by relatively high (5–10%) concentrations of nonpolar detergents (fig.2). The solubilized ^{57}Co -protein gave a single peak on gel filtration with Sepharose CL-6B in the presence of 0.1% deoxycholate, corresponding to an apparent M_{T} of $600\,000-800\,000$. This large complex was rather stable, since a single peak corresponding to an apparent M_{T} of $500\,000$ was obtained on gel filtration in the presence of 7 M urea (fig.1B). When either

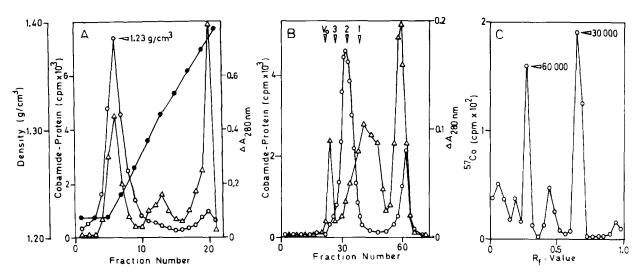


Fig.1. Determination of physical properties of the cobamide protein complex from *Methanobacterium thermoautotrophicum*: (A) CsCl density-gradient centrifugation of resuspended 100000 × g pellet. (Ο) ⁵⁷Co in the fractions, (Δ) ΔΑ_{280nm}, (•) density gradient. (Β) Sepharose CL6B gel filtration of the solubilized cobamide protein complex in the presence of 7 M urea. (Ο) ⁵⁷Co in the fractions, (Δ) ΔΑ_{280nm}. Arrowheads (calibration proteins): 1, aldolase (158 kDa); 2, ferritin (440 kDa); 3, thyroglobulin (669000 g). V₀, void volume. (C) SDS-polyacrylamide gel electrophoresis of the 500 kDa fraction of Sepharose CL6B gel filtration shown in B. (Ο) ⁵⁷Co per slice.

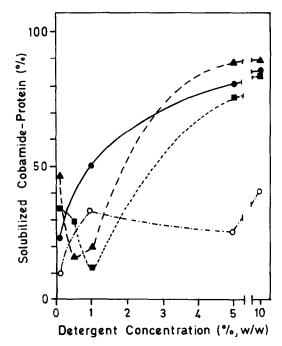


Fig. 2. Solubilization of the cobamide protein complex from the $100000 \times g$ pellet of cell extract from ⁵⁷Colabelled *Methanobacterium thermoautotrophicum*: dependence on detergent concentration. (\bullet) Deoxycholate, (\blacktriangle) Triton X-100, (\blacksquare) Lubrol, (\bigcirc) cholate (less polar).

crude extract or the 500 kDa Sepharose fraction were analyzed on SDS-polyacrylamide gel electrophoresis, two clearly separated ⁵⁷Co-carrying bands corresponding to ~30 kDa and ~60 kDa were observed (fig.1C). They had a similar Co content and accounted for more than 70% of the ⁵⁷Co applied to the gels. Excessive heating in the presence of SDS resulted in the disappearance of ⁵⁷Co from the two protein bands. Since most ⁵⁷Co was recovered in the cyano factor III, these findings indicate that the proteins contain factor III firmly, but not covalently bound.

4. DISCUSSION

It was shown that most of the corrinoid factor III, which is the sole cobamide detected in *M. ther-moautotrophicum* [6] is bound here to a large stable protein complex. By different preliminary criteria this was characterized best as an integral membrane protein complex, with the smallest corrinoid-containing subunit of molecular mass ~30 kDa. Until now no enzymatic function can be ascribed to this corrinoid protein. However, in vitro studies of autotrophic acetyl-CoA synthesis

(unpublished) seem to indicate that it is not involved in CO2 fixation into cell carbon. On the other hand, reduced free vitamin B_{12} (B_{12s}) was the most effective electron donor for methyl coenzyme M reduction to CH₄ catalyzed by the purified methyl coenzyme M reductase [22]. This enzyme is membrane associated (G. Gottschalk, Göttingen, personal communication) and its physiological electron donor unknown. Furthermore, the stimulatory effects of corrinoids on the methyl-CoM reductase system using H₂ as the electron donor were described [23]. When actively growing cultures were pulse labelled with ¹⁴CO₂, only very little (~4%) of cellular factor III was methylated (the light-sensitive CH₃-B₁₂ was added as internal standard for control; Stupperich, E. Rühlemann, M., unpublished). This indicated that indeed a corrinoid enzyme is involved in methyl transfer, e.g. in acetyl-CoA and, perhaps, methionine synthesis; but most of the cobamide may fulfill a different function in the membrane. In view of our and others' findings we suggest a role in electron transport and, hence, in the generation of an electrochemical gradient [24] (cf. B_{12a} $(Co^{III})/B_{12r}$ (Co^{II}) , $E'_0 = 242$ mV; B_{12r} $(Co^{II})/B_{12s}$ $(Co^{I}), E'_{0} = -556 \text{ mV}; \text{ cf. } CH_{3}OH/CH_{4}, E'_{0} =$ 169 mV) [25]. Future studies of methanogenesis from CO₂ and H₂ may have to account for the role of the corrinoid membrane protein.

ACKNOWLEDGEMENTS

This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and by a generous gift of the Eberhardt-Stiftung in Ulm. Thanks are due to Dr Stupperich and M. Rühlemann for invaluable advice and help in isolation of factor III and to Professor Thauer, Marburg, for discussing unpublished data. Professors Henning and Deppert, Ulm, are thanked for the use of ultracentrifuges.

REFERENCES

- Balch, W.E., Fox, G.E., Magrum, J., Woese, C.R. and Wolfe, R.S. (1979) Microbiol. Rev. 43, 260-296.
- [2] Lezius, A.G. and Barker, H.A. (1965) Biochemistry 4, 510-518.

- [3] Krzycki, J. and Zeikus, J.G. (1980) Curr. Microbiol. 3, 243-245.
- [4] Höllriegl, V., Scherer, P. and Renz, P. (1983) FEBS Lett. 151, 156-158.
- [5] Pol, A., Gage, R.A., Neis, J.M., Reijnen, J.W.M., Van der Drift, C. and Vogels, G.D. (1984) Biochim. Biophys. Acta 797, 83-93.
- [6] Stupperich, E., Steiner, I. and Rühlemann, M. (1986) Anal. Biochem., submitted.
- [7] Van der Meijden, P., Heythuysen, H.J., Powels, A., Howen, F.P., Van der Drift, C. and Vogels, G.D. (1983) Arch. Microbiol. 134, 238-242.
- [8] Van der Meijden, P., Brömmelstroet, B.W., Poirot, C.M., Van der Drift, C. and Vogels, G.D. (1984) J. Bacteriol. 160, 629-635.
- [9] Lino, A.R., Xavier, A.V., Moura, I., LeGall, J. and Ljungdahl, L.G. (1985) Rev. Port. Quim. 27, 175-177.
- [10] Eikmanns, B. and Thauer, R.K. (1985) Arch. Microbiol. 142, 175-179.
- [11] Ljungdahl, L., Irion, E. and Wood, H.G. (1966) Fed. Proc. Amer. Soc. Exp. Biol. 25, 1642-1648.
- [12] Ljungdahl, L. and Wood, H.G. (1982) in: B₁₂ (Dolphin, D. ed.) pp.165-202, Academic Press, New York.
- [13] Hu, S.I., Pezacka, E. and Wood, H.G. (1984) J. Biol. Chem. 259, 8892–8897.
- [14] Holder, U., Schmidt, D.E., Stupperich, E. and Fuchs, G. (1985) Arch. Microbiol. 141, 229-238.
- [15] Fuchs, G. and Stupperich, E. (1986) Syst. Appl. Microbiol., in press.
- [16] Taylor, C.D. and Wolfe, R.S. (1974) J. Biol. Chem. 249, 4879–4885.
- [17] Stadtman, T.C. (1967) Annu. Rev. Microbiol. 21, 212–242.
- [18] Ellefson, W.L., Whitmann, W.B. and Wolfe, R.S. (1982) J. Biol. Chem. 256, 4259-4262.
- [19] Pfaltz, A., Jaun, B., Fässler, A., Eschenmoser, A., Jaenchen, H., Diekert, G. and Thauer, R.K. (1982) Helv. Chim. Acta 65, 828-865.
- [20] Ellefson, W.L., Whitman, W.B. and Wolfe, R.S. (1982) Proc. Natl. Acad. Sci. USA 79, 3707-3710.
- [21] Schönheit, P., Moll, J. and Thauer, R.K. (1980) Arch. Microbiol. 127, 59-65.
- [22] Ankel-Fuchs, D. and Thauer, R.K. (1986) Eur. J. Biochem., in press.
- [23] Whitman, W. and Wolfe, R.S. (1985) J. Bacteriol. 164, 165-172.
- [24] Blaut, M. and Gottschalk, G. (1984) Eur. J. Biochem. 141, 217-222.
- [25] Savéant, J.M., De Tacconi, N., Lexa, D. and Zickler, J. (1979) in: Vitamin B₁₂ (Friedrich, W. ed.) pp.203-212, De Gruyter, Berlin.